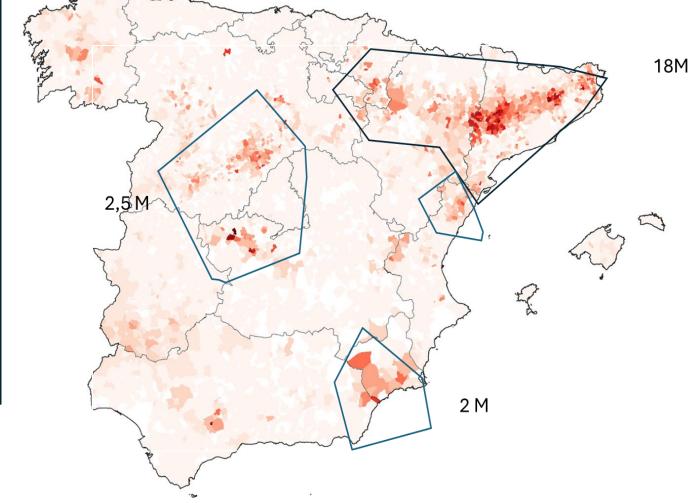


Prevalence and genetic diversity of swine influenza virus in Spanish pig farms

Ivan Domingo Carreño

PhD student


Dept. Sanitat i Anatomia Animals Universitat Autònoma de Barcelona

INTRODUCTION

- At a global level, most of the pig farms are endemically infected with influenza, driven by high replacement rates and the continuous introduction of susceptible animals
- Within Europe, Spain is one of the leading countries for pig production, with a total census of 34 million pigs in 2024
- In Spain, pig production is spread across the country with some areas with high density of farms
- Farms in these areas are often in close proximity to each other, which facilitates the spread and genetic exchange of virus strains.

Objectives of the study

1. Analyze the phylodynamics and phylogeography of Influenza A in pig production systems.

2. Identify potential routes of introduction and spread of swine influenza viruses between farms.

MATERIALS AND METHODS

Sample collection

Evaluation of about 80 farms of 5 large companies located across Spain

Samplings are scheduled every 6 months during 2 years (starting on March 2024)

+ Biosecurity survey of each farm

Sample processing

Viral RNA is extracted using a commercial kit -MagMax CORE Nucleic **Acid Purification Kit**

RT-qPCR

Primers and probe targeted to the IAV matrix gene (Busquets et al. 2010)

Virus isolation

Madin-Darby canine (MDCK) kidney cells are used for the isolation of IAV from RT-qPCR positive samples

Sequencing

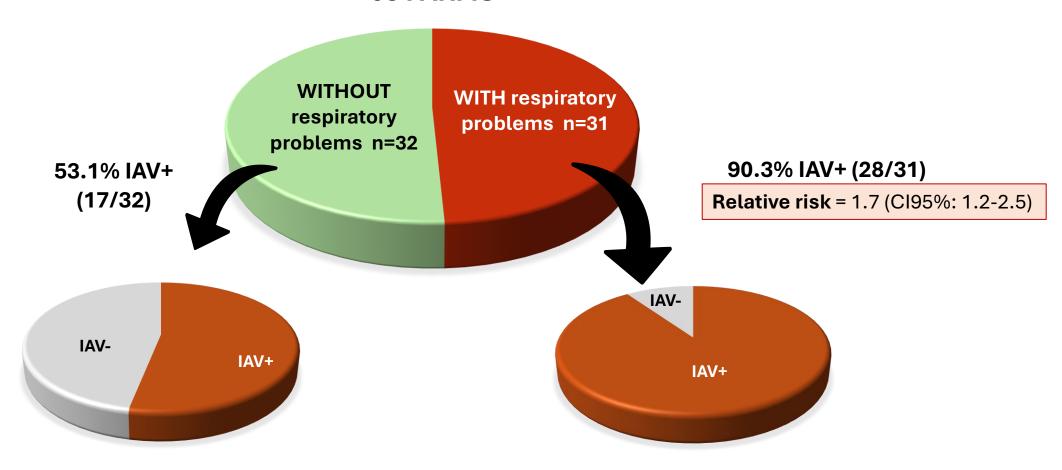
MDCK-isolated viruses using Illumina® MiSeq platform

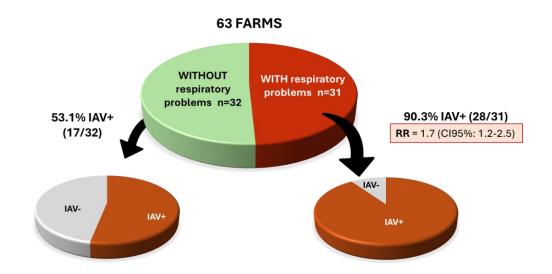
Phylogenetic analyses

High-quality reads are filtered using IAV sequence references

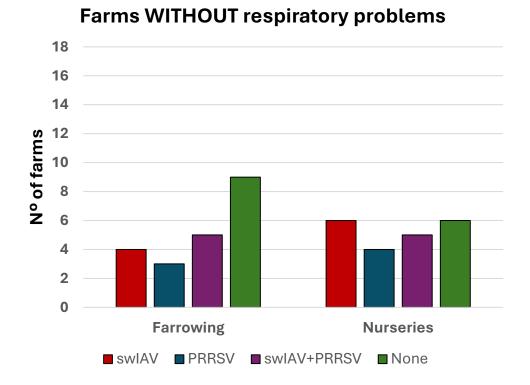
If a viral quasi-species is obtained, genome consesus are generated

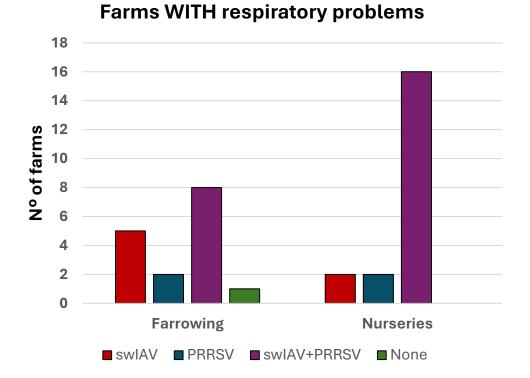
RESULTS



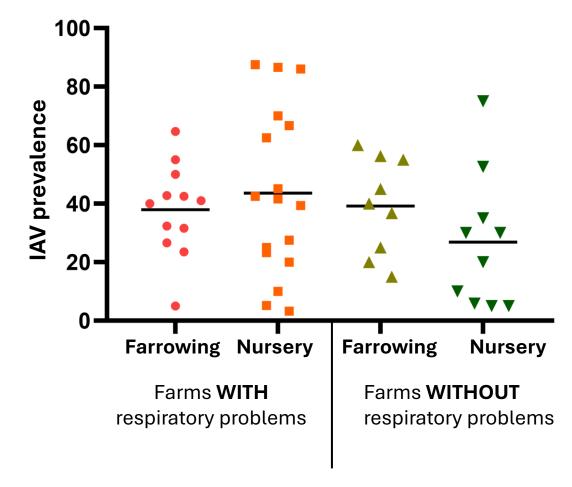

FIRST ROUND SAMPLING

	IAV+
Farrowing only (n=11)	45.4% (5/11)
Farrowing + Nursery (n=10)	40% (4/10)
Nursery only (n=11)	72.7% (8/11)


P=	0	.2	40	١
•	•	_	. •	

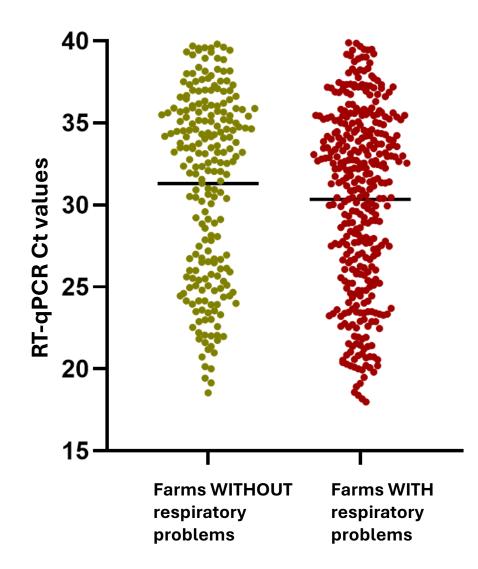

P=0.690

	IAV+
Farrowing only (n=11)	90.9% (10/11)
Farrowing + Nursery (n=5)	100% (5/5)
Nursery only (n=15)	86.6% (13/15)

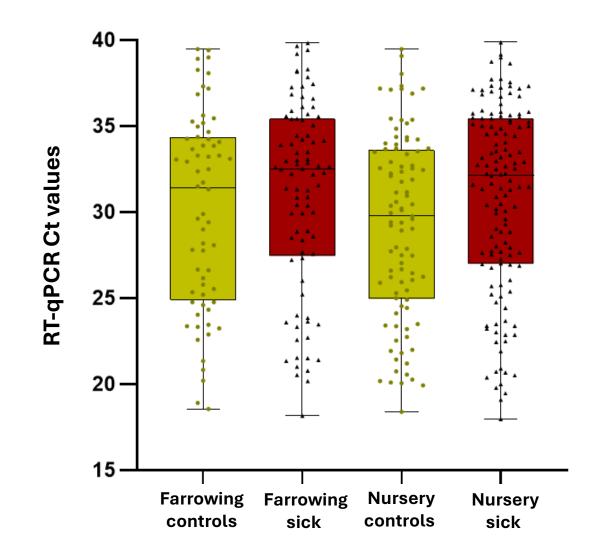


Co-infections with PRRSV were predominant in clinically affected nurseries or farrowing units

Prevalence of IAV in farms WITH and WITHOUT problems by age non-significantly is groups different



The distribution of Ct values for IAV in farms WITH and WITHOUT respiratory problems is non-significantly different



Distribution of swIAV RTqPCR Ct values by group and age in farms WITH respiratory problems

Γ

Detected lineages

Lineage detected	Isolates NGS	Percentage
H1avN1av	8	34.8
H3huN2hu	6	26.1
H1avN2hu	3	13
H1huN2hu	2	8.7
H3huN1av	1	4.4
H1huN1av/N2hu	1	4.4
H1pdmN1pdm	1	4.4
H3huN1av/N2hu	1	4.4
Total	23	100

In 5 farms co-circulation of 2 different lineages at the same moment

In 4 of these 5 farms the lineage present changed over consecutive samplings

Lineages detected (n = 95)	No isolates RT-qPCR	No isolates NGS	No isolates Total	Percentage
H1avN2hu	31	5 a	36	33.6
H1avN1av	24	2	26	24.3
H1huN2hu	20	0	20	18.7
H3huN2hu	6	2	8	7.5
H1huN1av	6	0	6	5.6
H1pdmN1pdm	5	0	5	4.7
H3huN1av	1	2	3	2.8
H1pdmN1av/N1pdm	1	0	1	0.9
H1av/H1pdmN1av ^b	0	1	1	0.9
H3huN1av/N2hu b	1	0	1	0.9
Total	95	12	107	100%

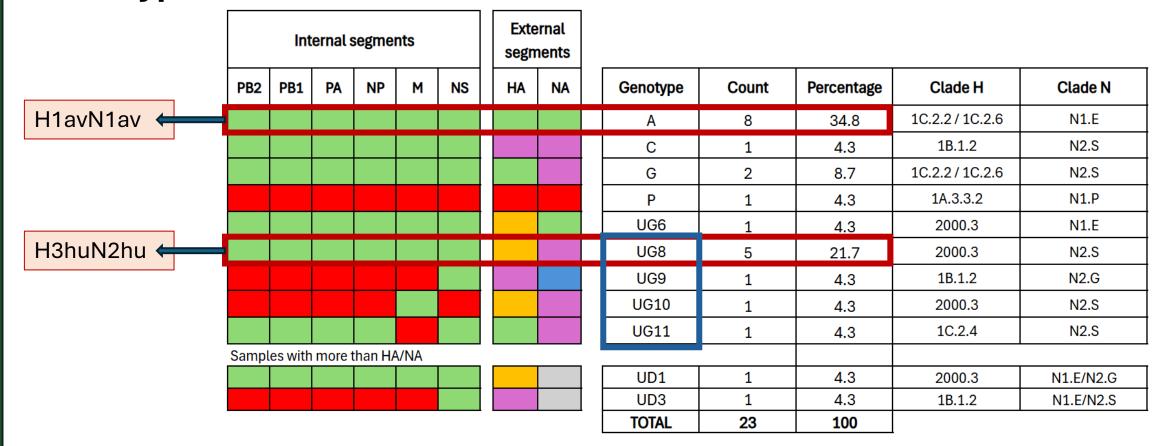
Distribution of detected lineages between 2017 – 2019 (Sosa-Portugal et al. 2020)

^a Includes one case retrieved from an apparent subclinical farm where the initial RT-qPCR assessment was H1avNx, and after successful isolation, the sequence obtained was found to be H1avN2hu.

b In two cases, two H or two N were detected in the RT-qPCR.

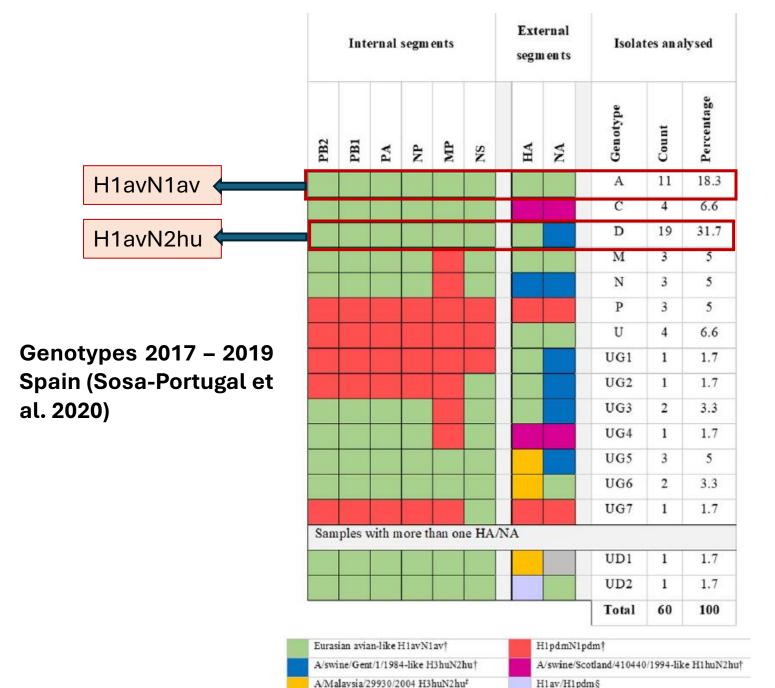
Lineages detected in farms WITH respiratory problems

Lineages detected	Isolates NGS	Percentage
H3huN2hu	3	42.8
H1avN1av	1	14.3
H1pdmN1pdm	1	14.3
H1huN2hu	1	14.3
H3huN1av	1	14.3
Total	7	100


Lineages detected in farms WITHOUT respiratory problems

Lineages detected	Isolates NGS	Percentage
H1avN1av	7	43.7
H1avN2hu	3	18.7
H3huN2hu	3	18.7
H1huN2hu	1	6.3
H1huN1av/N2hu	1	6.3
H3huN1av/N2hu	1	6.3
Total	16	100

Genotypes



N1 av/N2hu§

Genotype D, the third more common in that study has not been detected yet in the 2024-25 sampling

Genotypes detected in farms WITH respiratory problems

Genotype	Count	Percentage	Clade H
Α	1	14.3	1C.2.6
Р	1	14.3	1A.3.3.2
UG6	1	14.3	2000.3
UG8	2	28.6	2000.3
UG9	1	14.3	1B.1.2
UG10	1	14.3	2000.3
TOTAL	7	100	

Genotypes detected in farms **WITHOUT** respiratory problems

Genotype	Count	Percentage	Clade H
A	7	43.8	1C.2.2 / 1C.2.6
C	1	6.3	1B.1.2
G	2	12.5	1C.2.2 / 1C.2.6
UG8	3	18.8	2000.3
UG11	1	6.3	1C.2.4
UD1	1	6.3	2000.3
UD3	1	6.3	1B.1.2
TOTAL	16	100	

ESFLU European Swine Influenza Network

Conclusions (preliminary)

- swIAV is more likely to be found in farms with respiratory problems.
- A different pattern of co-infection with PRRSV is obseved depending on the status of the farm
- Apparently, in farms with respiratory problems the diversity of lineages seems to be higher
- A possible trend towards a decrease in H1avN2hu and increase in H3huN2hu compared to previous studies is observed in Spain

Thank you for your attention!

Acknowledgements

TRANSMISSIBLE DISEASES GROUP (UAB)

- Laia Aguirre
- Mònica Alberch
- Alberto Allepuz
- Vania Ciaravino
- Joaquim Castellà
- Martí Cortey
- Laila Darwich
- Marga Martín
- **Enric Mateu**
- Paula Rebollo
- Soledad Serena
- Montse Tello
- Ge Ye

